Urban Link Travel Time Prediction Based on a Gradient Boosting Method Considering Spatiotemporal Correlations
نویسندگان
چکیده
منابع مشابه
Urban Link Travel Time Prediction Based on a Gradient Boosting Method Considering Spatiotemporal Correlations
The prediction of travel times is challenging because of the sparseness of real-time traffic data and the intrinsic uncertainty of travel on congested urban road networks. We propose a new gradient–boosted regression tree method to accurately predict travel times. This model accounts for spatiotemporal correlations extracted from historical and real-time traffic data for adjacent and target lin...
متن کاملUrban Road Travel Time Prediction based on ELM
The Travel Time Prediction (TTP) is an important element in the study of the advanced transportation guidance system and control system. In this paper, an advanced method with Extreme Learning Machine algorithm(ELM) has been discussed by analyzing the various travel time prediction method. The feasibility and advantages of Extreme Learning Machine in travel time prediction has been studied, and...
متن کاملUrban Expressway Travel Time Prediction Method Based on Fuzzy Adaptive Kalman Filter
According to the poor adaptive ability of traditional filter algorithm in the estimation for traffic state and travel time with Kalman filter, an improved fuzzy adaptive Kalman filtering method was proposed. The new interest of observation noise was defined, and the fuzzy logic was used to adjust the importance weights of system noise and observation noise through on-line monitoring the interes...
متن کاملReal-time Travel Time Prediction on Urban Arterial Network
Travel time is one of the most desired operational variables serving as a key measure of effectiveness for evaluating the system performance of freeways and urban arterials. With accurate travel time information, decision makers, road users, and traffic engineers can make informed decisions. However, retrieving network-level travel time information has several challenges, such as traffic data c...
متن کاملMultiple-Factor Based Sparse Urban Travel Time Prediction
The prediction of travel time is challenging given the sparseness of real-time traffic data and the uncertainty of travel, because it is influenced by multiple factors on the congested urban road networks. In our paper, we propose a three-layer neural network from big probe vehicles data incorporating multi-factors to estimate travel time. The procedure includes the following three steps. First...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ISPRS International Journal of Geo-Information
سال: 2016
ISSN: 2220-9964
DOI: 10.3390/ijgi5110201